
Requirements
Cohort 3 - Group 10

Backlogged

Ben Walker
Chris Williams

Gavindu Tissera
Josh White

Nana Twum Oviarobo
Tamerlan Urazbayev

Tymur Topala



Our requirements engineering and elicitation process conform to the standards outlined in
the IEEE requirements engineering documentation [1]. Following extensive research of
proposed standards for software design and requirements elicitation, we collectively agreed
that the standards presented in this document were the most descriptive in nature and lent
themselves to an intuitive and accessible categorization of our user’s needs.

The main incentive behind this decision was the usage of the modal verbs ‘May’, ‘Shall’ and
‘Should’ as descriptors for the priority of our requirements [1, p.19], which unequivocally
outlines the importance of each requirement in terms that are comprehensible to both the
design team and the client. This idea is supported by some of the most advanced
organisations in the technology industry, namely NASA, who employ this standard in their
own requirements matrix [2], emphasising the robust nature of this documentation quality.

The requirements were outlined to the team in a meeting with the client, who requested a
multitude of features to be included in the final iteration of our product. These specifications
have been refined by the team as a collective, ensuring that the resulting components
‘solved a problem, achieved a goal or addressed a stakeholder concern’ and most
importantly were ‘qualified by measurable conditions’ [1, p.18]. The latter of these two factors
will become increasingly important during the testing phases of our software engineering
where results will need to comply with agreed constraints to measure their success. The
initial requirements proposed are often subject to change, with 42% of similar projects facing
issues with the articulation of user needs [3, p.14], however in order to mitigate this
possibility, we will be holding further meetings with the client in order to validate current
requirements and ensure they satisfy their requests.

Within our requirements table, the elicitations at a user level are broken down into functional
(things the system must do) and non-functional requirements (qualities and properties the
system must have). It has been noted that the Agile software methodology can conflict with
the documentation and delivery of non-functional requirements as it ‘prioritises the
incremental delivery of functional features’ [4, p.1]. As a team, we feel that this issue is
addressed appropriately in the IEEE documentation [1, p.24] and have recognised these
requirements prior to the design process in order to maximise functional output without
sacrificing the utilities desired by the user.

The research considered has developed our understanding of the requirements elicitation
process and provided us with measures to accurately identify user needs and describe their
measurement in the testing stage of our design. Our findings will provide us with a rigid
foundation from which to draft and build our product for the client and we are confident that
issues relating to user requirements can be addressed promptly through effective
communication between the team and the stakeholder, aided by weekly sprints under the
agile methodology employed in our design.

User requirements

ID Description Priority



UR_OS_COMPATIBILITY The game shall run on Windows,
Mac and Linux operating systems.

Shall

UR_HARDWARE_COMPATABILITY The game shall run on minimal
specification hardware.

Shall

UR_DISPLAY_SCALABILITY The game should run correctly on
different DPI displays.

Should

UR_COLOURBLIND_ACCESIBILITY The game shall be accessible to
colour blind users.

Shall

UR_PAUSE The user shall be able to pause the
game.

Shall

UR_TIMER The game shall run for 5 real world
minutes, representing 3 in-game
years.

Shall

UR_TIME_TRACKER The game should use weeks and
semesters so the user can track the
in-game time

Should

UR_AUDIO There should be background music
and sound effects.

Should

UR_COUNTER The game shall have a counter with
the amount of buildings that have
been placed

Shall

UR_LOCATIONS There should be at least one of each
building location (one place to sleep,
one place to learn, one place to eat,
one recreational activity)

Shall

UR_LOCATIONS_MOVE The user should be able to move
buildings once they’ve been placed

Should

UR_LOCATIONS_SIZES Different locations shall be different
shapes and sizes so the user can
easily differentiate them

Should

UR_MAP The user shall be shown a map
including different geographical
features to build their university
around.

Shall

UR_LOCATIONS_UPGRADE Buildings may be able to be
upgraded to allow additional features
or capacity

May

UR_MENU Game should start with a menu
screen

Should

UR_TOOLTIPS The game may have tutorial style May



messages when users interact with
elements for the first time

UR_LOCATION_PLACEABILITY The system shall show to the user
where they can or can’t place a
building.

Shall

Functional requirements

ID Description User Requirements

FR_STOP_TIME The user should be able to stop the time at
any point during the game. The user should
be able to queue buildings to be placed,
which will start construction once the game is
unpaused

UR_PAUSE

FR_AUDIO_MUTE The game should have a button that allows
the user to mute the sounds.

UR_AUDIO

FR_LOCATIONS_P
LACEABILITY

The system shall clearly display on the grid
whether a building can be placed

UR_LOCATIONS

FR_COUNT_DISPL
AY

The system shall update a counter of building
types to the user each time one is placed.

UR_COUNTER

FR_LOCATION_PL
ACEABILITY

The system shall show to the user whether
they can place a building in a location on a
grid or not.

UR_LOCATION_P
LACEABILITY

FR_LOCATIONS_S
IZE

Different locations should take up different
amounts of squares on the grid.

UR_LOCATIONS_
SIZE

FR_TIMER_DISPL
AY

The timer shall display the in-game time in
months and semesters in accordance with
the user’s wishes.

UR_TIMER

FR_SOUNDTRACK The game should play a soundtrack when the
the title screen is loaded

UR_AUDIO

Non-Functional requirements



ID Description User Requirements Fit Criteria

NFR_JVM The system shall
support the JVM
used by all 3
operating
systems to
provide
compatibility
between OS.

UR_OS_COMPATIB
ILITY

Complete a
successful
runthrough of the
game on all 3
systems.

NFR_DISPLAY_SIZES The game should
be playable on
both laptop and
large whiteboard
sized screens

UR_DISPLAY_SCA
LABILITY

Test game on
varying display sizes
to ensure textures
scale appropriately.

NFR_HARDWARE_Co
MPATABILITY

The game should
run on minimal
specification
hardware, as
expected to be
used by the
average user.

UR_HARDWARE_C
OMPATABILITY

Test game on
personal laptops
which reflect
average user setup.

NFR_PLAYABILITY The game should
be operable by
users who have
picked the game
up for the first
time

UR_TOOLTIPS Have testers who
have never played
the game before
play and collect their
feedback on which
game mechanics
they found intuitive
or unintuitive and
provide guidance on
its usage

NFR_COLOURBLIND_
ACCESSIBILITY

The game shall
be playable by
users who are
visually impaired
or colourblind

UR_COLOURBLIN
D_ACCESSIBILITY

Interview a
colourblind QA
tester to check if the
game is accessible
for their needs.



References

[1] ISO/IEC/IEEE, Systems and software engineering — Life cycle processes —
Requirements engineering, 2nd ed. 2018.

[2] NASA, NASA Software Engineering Requirements: Appendix C - Requirements mapping
matrix, 2022.

[3] Cristina Palomares, Xavier France, Carme Quer, Panagiota Chatzipetrou, Lidia López,
Tony Gorschek, The state‑of‑practice in requirements elicitation: an extended interview study
at 12 companies, Springer-Verlag London, 2021.

[4] Aleksander Jarzębowicz, Paweł Weichbroth, A Qualitative Study on Non-Functional
Requirements in Agile Software Development, Gdańsk University of Technology, 2021.


